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Athorough quantitative understanding of populations at the edge of extinction is needed to manage both
invasive and extirpating populations. Immigration can govern the population dynamics when the popula-
tion levels are low. It increases the probability of a population establishing (or reestablishing) before going
extinct (EBE). However, the rate of immigration can be highly fluctuating, Here, we investigate how the

;;%’:S’?:g&' stochasticity in immigration impacts the EBE probability for small populations in variable environments.
Stocking We use a population model with an Allee effect described by a stochastic differential equation (SDE) and
Translocation employ the Fokker-Planck diffusion approximation to quantify the EBE probability. We find that, the effect
Relocation of the stochasticity in immigration on the EBE probability depends on both the intrinsic growth rate (r)
Propagule and the mean rate of immigration (p). In general, if r is large and positive (e.g. invasive species introduced
Extinction to favorable habitats), or if p is greater than the rate of population decline due to the demographic Allee ef-

fect (e.g., effective stocking of declining populations), then the stochasticity in immigration decreases the
EBE probability. If r is large and negative (e.g. endangered populations in unfavorable habitats), or if the
rate of decline due to the demographic Allee effect is much greater than p (e.g., weak stocking of declining
populations), then the stochasticity in immigration increases the EBE probability. However, the mean time
for EBE decreases with the increasing stochasticity in immigration with both positive and negative large
r. Thus, results suggest that ecological management of populations involves a tradeoff as to whether to
increase or decrease the stochasticity in immigration in order to optimize the desired cutcome. Moreover,
the control of invasive species spread through stochastic means, for example, by stochastic monitoring
and treatment of vectors such as ship-ballast water, may be suitable strategies given the environmental
and demographic uncertainties at introductions. Similarly, the recovery of declining and extirpated pop-

ulations through stochastic stocking, translocation, and reintroduction, may also be suitable strategies.
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1. Introduction

Species colonization and extirpation have been known since the
birth of ecology. These can occur through natural processes, but
their rates have been accelerated recently due to human activities
{Simberloff, 2009). Some cclonizing species become invasive {Co-
lautti and Maclsaac, 2004; Vale'ry et al,, 2008), meaning that they
expand beyond their native range and increase in numbers poten-
tially changing the existing structures and functions of the exotic
habitats, and imposing trickledown effects, detrimental or bene-
ficial, to the habitat dependents (Keller et al., 2007). Indeed, the
next invader and its effects are largely unknown. Similarly, we do
not know the effect of the next species going extinct.
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Invasive species keep expanding their range (Sorte et al., 2010),
some threatening indigenous species (Sanderson et al,, 2009}, and
becoming a major threat to biological diversity (Lockwood et al.,
2005). They are estimated to be a cause of the endangerment of
48% of the species listed under the US Endangered Species Act
(ESA) (Czech and Krausman, 1997; Wilcove et al., 1998), and are
estimated to cost the US economy more than $120 billions a year
(Pimentel, 2009). Although one can argue that humans are not in
a position to morally judge their impact on the ecology of the sys-
tems, we can all agree that some invasive species have become a
nuisance (Lovell et al., 2006), whereas the extinction of a species
may come with a price (Wilson et al., 2011).

Thus, if we are to control the colonization of non-indigenous
species that rapidly propagate through human-mediated vectors
and become invasive in novel habitats (Lovell et al., 2006; Sim-
berloff, 2009), we need to know how the immigration dynamics
affect their colonization potential. Similarly, if we are to stock
declining indigenous populations preventing them from going
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extinct, or if we are to reintroduce extirpated indigenous popula-
tions (IUCN, 2010; Snyder et al,, 1996), that are subject to unknown
stochastic factors, we need to know how the immigration dynam-
ics affects their persistence and re-colenization potential. In this
paper, we address the aspect of how stochasticity in immigration
affects the population dynamics and the outcomes.

Propagule pressure is a main driver of colonization (Colautti
et al., 2006; Simberloff, 2009). For example, non-indigenous ma-
rine species such as diaptomid copepods, Pseudodiaptomus inopi-
nus, P. marinus, and P. forbesi have been invading the west coast of
North America from their native habitats in Japan through human-
mediated vectors such as ship ballast water discharge (Cordell
et al, 2008). The Canadian Aquatic Invasive Species Network
(CAISN, 2011) has developed a research program to estimate their
propagule pressure, so as to assess the risks of population estab-
lishment. To control unwanted colonization, efforts are made to
reduce human-mediated immigration (Olenin et al., 2011).

On the reinforcement of populations against going extinct,
science-based relocation (Sheean et al, 2011), translocation
(Weeks et al., 2011) and assisted colonization programs (Seddon,
2010) are becoming increasingly popular. For example, indige-
nous species from the Superfamily Diaptomidae, Hesperodiaptomus
shoshone, have been extirpated from their native habitats in alpine
lakes after fish-stocking (Sarnelle and Knapp, 2004). Kramer et al.
(2008) have carried out re-colonization experiments to investi-
gate the constraining factors of the H. shoshone’s population recov-
ery. To sustain such endangered, threatened or declining species,
efforts are made to artificially replenish populations by captive
breeding and stocking (Paragamian and Hansen, 2011; Thomas
et al.,, 2010), and to recover extirpated populations that by rein-
troductions (IUCN, 2010; Lorenzen et al., 2010).

In the contexts of both the spreading of colonizing populations
through natural or human-mediated propagule pressure, and
stocking or reintroduction of declining populations, we observe
that the dynamics of a population where the propagules are
flowing into a habitat as immigration in general. Armstrong and
Seddon (2007) have proposed that, the knowledge gained from
colonization dynamics of invasive species can be used to improve
the success of stocking and reintroduction programs of declining
or extirpating populations.

Cordell et al. (2009) have sampled large densities of non-
indigenous species in ballast water from ships entering Puget
Sound. However, most species found in ballast-water discharge are
not known to have colonized yet. Numerous control treatments,
such as mid oceanic exchange of ballast water (NOAA technical
memorandum, 2007; Simard et al, 2011), chemical treatments
(Nanayakkara et al., 2011) and temperature treatments of ballast
water tanks (Quilez-Badia et al,, 2008) are deployed to control
immigration (Olenin et al., 2011) and thus to minimize coloniza-
tion risks. Yet, not all ships carry the same densities of species at
all times. They are subject to variation (see data in Cordell et al.
(2009)). Moreover, there is no guarantee that such control treat-
ments can reduce risks to zero. Hence, deploying costly methods
uniformly or arbitrarily to reduce immigration may not be eco-
nomically optimal when the immigration is variable. If we know
how stochasticity in immigration impacts the chances of coloniza-
tion in the presence of other stochastic factors such as environment
and demography, then we can calibrate the manner in which these
treatments should be deployed to make them more effective in re-
ducing the invasion risks to acceptable levels. The optimal control
methods to decrease the spread have been investigated from the
economic standpoint by Finnoff et al. (2010).

Endangered, threatened, or declining populations are com-
monly associated with negative intrinsic growth rates, and some
of these populations are stressed by unknown and unpredictable
stochastic factors (Morris and Doak, 2002). Few efforts in stocking

and reintroductions have been successful in sustaining declining or
endangered populations (Noél et al., 2011; Rasmussen et al., 2009;
Schooley and Marsh, 2007; Wada et al,, 2010). Noél et al. (2011)
has indicated that failures of close to 50% were evident in the rein-
troduction of 50 populations of 7 wetland species. Godefroid et al.
(2011) have shown that the causes for 34% of the failures in rein-
troductions were not known, while 8% were due to known unex-
pected changes in the habitats. Some failures have been attributed
to the environmental stochasticity (Vincenzi et al., 2012). Schaub
et al. (2009) have suggested incorporating demographic stochas-
ticity in making decisions when to end release programs so as to
guarantee success.

Often there is unaccounted stochasticity apparent in the popu-
lation densities and in the timing of stocking and reintroductions
(e.g.. see data in Shute et al. (2005)). However, in the presence of
environmental and demographic variations, we do not yet know
how the variation in stocking or reintroduction rates will impact
the subsequent colonization or re-colonization success. If we were
to know this, then we could strategize stocking and reintroduc-
tion schemes to optimize their positive effects. To our knowledge,
there have been no analyses to date, on the effects of variability in
stocking, translocations, or reintroductions in determining estab-
lishment success of declining populations.

The probabilities associated with the colonization and extir-
pation of populations are commonly quantified using stochas-
tic differential equations (SDE) and diffusion approximations
through Fokker-Planck equations (FPE) (Dennis, 2002; Morris
and Doak, 2002; Ovaskainen and Meerson, 2010). Dennis (2002)
has used the Fokker-Planck diffusion method (as in Gardiner
(2004)) to quantify the probability of a population size first
hitting one arbitrary threshold before another. Drake and Lodge
(2006) have used the same mathematical method of first pas-
sage probability to quantify the probability of a population first
becoming a nuisance species (or establishing) before going ex-
tinct (EBE probability) incorporating a model with continuous
immigration, and shown that an increase in the rate of immi-
gration increases the EBE probability under stochastic demo-
graphic conditions. However, the impact of stochasticity in im-
migration on the EBE probability has not yet received enough
attention.

Here, the extinction threshold is defined on the assumption that,
the species go functionally extinct below a lower population den-
sity. Assumptions on the existence of such quasi-extinction thresh-
olds is standard in population viability analyses (Morris and Doak,
2002; Dennis, 2002). However, when the immigration is continu-
ous and indefinite in time, we note that, any population realiza-
tion that hits even a zero density level can later replenish from
extirpation. Of course, the imposition of ecologically meaningful
population thresholds on a model is only an approximation to the
more complex full system. It is certainly possible that, a population
that drops below the extinction threshold can also recover through
stochastic effects alone.

Taylor and Hasting (2005) have described how a strong demo-

_ graphic Allee effect (Courchamp et al., 2008) will force the per capita

population growth rate to become negative below a low popula-
tion threshold. This threshold, defined as the Allee threshold, also
can be used as an extinction threshold for quantifying the EBE
probability when the immigration is continued indefinitely. This is
because, we note that, the negative growth rate caused by the de-
mographic Allee effect, due to individuals being unable to replace
themselves, can counteract the rate of immigration at low popu-
lation levels and creates a functional extinction threshold. There
is empirical evidence to support the assertion that populations in-
troduced at a level below a demographic Allee threshold tend to go
extinct (e.g. Kramer et al. (2008)). Kramer et al. (2009) have found
substantial evidence for Allee effects in animal populations. In 69%
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of 91 studies, there was conclusive evidence for a component Allee
effect, the demographic Allee effect, or both. Out of those studies,
23 showed the presence of the demographic Allee effect, in which,
7 showed a critical density below which the population growth
rate was negative, that is, the presence of the strong demographic
Allee effect. Yet, Gregory et al. (2010) have concluded that there
was relatively a high potential for the demographic Allee effects
in the populations they studied, but only few cases were observed
across many taxa.

In the case of declining and extirpated populations, where often
the stocking is carried out only until the population either gets
established or is gone extinct, we can investigate the impact of
stochasticity in stocking on the EBE probability similar to invasive
species. Thus, here we define immigration broadly as natural and
human-mediated introductions through vectors, translocations,
relocations, and artificial replenishment of populations through
captive breeding and release into habitats.

In the context of invasive species (assuming populations of high
fitness, or having large and positive intrinsic growth rates given the
environment), we investigate how stochasticity in immigration
continues to impact the EBE probability of an initial population
impulse that exceeded the extinction threshold. In the context of
declining (or endangered or threatened) populations (assuming
populations of low-fitness, or having large and negative intrin-
sic growth rates given the environment), we investigate how the
stochasticity in stocking or reintroduction continues to impact the
EBE probability of an existing population. To make our model real-
istic, we allow for Allee effect, demographic stochasticity and en-
vironmental stochasticity in the population dynamics (see Lande
et al. (2004) for details) although our main focus is the impact of
stochasticity in immigration.

2. Model

First, we analyzed a deterministic exponential Allee model for
the case where stochasticity is not present in the immigration.
Next, we incorporated environmental, demographic, and immi-
gration stochasticity into the model, heuristically, and solved the
corresponding Fokker-Planck diffusion equation for the EBE prob-
abilities for the cases with and without stochasticity in immi-
gration under two scenarios: species moving into (A) favorable
habitats (i.e., where the intrinsic growth rate is large and positive),
for example, colonizing high-fitness populations as in the case of
invasive species, and, (B) unfavorable habitats (i.e. where the in-
trinsic growth rate is large and negative), for example, stocking
low-fitness populations as in the case of endangered, threatened,
or declining populations.

We solved the FPE for the cases incorporating (i) all three
types of stochasticity (environmental, demographic and immigra-
tion) using a finite-difference numerical method (Grasselli and
Pelinovsky, 2008), and the cases specific to (ii) demographic and
immigration stochasticity, and (iii) immigration stochasticity, an-
alytically. We also derived the equation that yields the moments
of first passage times for the population first hitting the establish-
ment threshold before the extinction threshold, or the time for EBE,
and analyzed the impact of stochasticity in immigration on mean
time for EBE.

Deriving SDEs heuristically from their counterpart determinis-
tic models has been a major concern in the theoretical ecology lit-
erature. The suitability of the SDE formulations, whether to use lto
(Mao, 1997) or Stratonovich (1963), has been thoroughly discussed
by Turelli (1977) followed by Ricciardi (1986) and more recently by
Braumann (2007, 2008). Ricciardi (1986) following up on Turelli
(1977) has shown that if the system is intrinsically a continuous
growth process in a random environment, then it should be mod-
eled using the Stratonovich formulation followed by appropriate

Growth rate

@

p-a

Population size (x)

Fig. 1. Population models £ = f(x), and, & = f(x) + p, with dashed lines for the
cases linearized at £ = 0.

calculus. Goel and Richter-Dyn (2004) have used this approach to
investigate stochastic models in biology in the case when the un-
derlying processes are continuous in time. If a process is discrete in
time, then the Ito SDE formulation may be more appropriate (Ric-
ciardi, 1986). Population viability analysis models commonly use
the Ito formulation (Dennis, 2002; Morris and Doak, 2002). An in-
vasive species study by Drake and Lodge (2006) also used the same
formulation. We also used the Ito one. For generality, the results are
mathematically comparable regardless of which method is used,
so that the specific method may only be relevant when fitting the
model to real data to calibrate parameters (Braumann, 2007),

Deterministic population model

We write the growth rate of a population having density x as
dx/dt = f(x) + p, where f(x) is the average rate of population
growth, and p is the mean rate of immigration into the population.
Function f(x) can take various linear (e.g. density-independent)
and non-linear (e.g. density-dependent) forms.

Here, we do not intend to investigate the case at x = 0, or at
high values limited by the population density. Our modeling fo-
cus is to investigate the dynamics of a population far below the
level of density dependent regulation. Thus, we take the linearized
form of the model near the low population equilibrium (the Allee
threshold), where dx/dt = 0 (Fig. 2). Thus, the model reduces to
a simple Malthusian form, such that, f(x) = rx — g, and, we write
dx/dt = rx — a -+ p. Here, r is the intrinsic growth rate of the pop-
ulation that depends on the individuals’ responses to environmen-
tal parameters, which was defined as r, in Fagan et al. (2010). The
parameter a is the rate of loss due to individuals that cannot, on
average, replace themselves resulting from the demographic Allee
effect (the simplest Allee form described in Gregory et al. (2010)).
Depending on whether r > 0 (scenario A} demonstrating high-
fitness, or r < O (scenario B} demonstrating low-fitness, we con-
sider that, the habitats the species are introduced to, or living in, are
either favorable or unfavorable to the population on average (Sibly
and Hone, 2002). Thus, invading species commonly show r > 0,
and endangered, or declining, populations commonly show r < 0.
We define the net inflow rate to be ¢ = p — a. Thus, note that, a
reduces the per capita growth rate to be negative at low population
densities, and p counteracts it as an opposing force to raise the per
capita growth rate to be positive (Fig. 1).

Fig. 2(a) illustrates the situation when habitats are favorable
(r > 0, scenario A). If the demographic Allee effect is strong (a > p,
scenario A1), then the per capita growth rate becomes negative at
population levels that fall below the Allee threshold (x < g/r), an
unstable equilibrium below which population eventually tends to
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Fig. 2. Dynamics of deterministic population model 1 & =1 + 9 when net-flow rates (¢) and intrinsic growth rates (r) are positive and negative. Here,g = p — a.

xdt T

zero. For initial values of x > q/r, the population tends to any high
arbitrary level. We note that, when a < p the Allee threshold is
removed (scenario A2). Therefore, for the scenario r > 0, the Allee
threshold exists only if a > p.

Fig. 2(b} illustrates the situation when habitats are unfavorable
(r < 0, scenario B). If the Allee effect is weak (a < p, scenario B2),
then the per capita growth rate becomes positive at small x < q/r,
and negative at x > gq/r, with x = q/r being a stable equilibrium.
InscenarioB1 (a > p), the per capita growth rate remains negative
as x is varied. In summary, whenr < 0(scenario B), the population
may persist in a low equilibrium density or tend to zero depending
on whether a < p (scenario B2) or a > p (scenario B1), respec-
tively. The low equilibrium density occurs solely due to the forcing
by propagules continuously flowing into the system and exceeding
the negative growth rate caused by the demographic Allee effect.

The two scenarios above,r > 0,andr < 0, suggestthatifa > p
(scenario A1 and B1), we may define a functional extinction thresh-
old that is forced by a strong demographic Allee effect, because the
negative net per capita growth rate of the population near zero
drives the population to extinction. By way of contrast, scenarios
A2 and B2 have positive net per capita growth rates at small pop-
ulation levels. Hence, the idea of a functional extinction threshold
does not make sense for scenarios A2 and B2, when the propagule
flow is continuous and indefinite. However, in practical situations
(such as the stocking of declining populations), assuming the ex-
istence of an extinction boundary may make sense for all scenar-
ios, including A2 and B2, as human intervention can halt propagule
flow wherever the population hits any arbitrary lower threshold.

Hence, in the context of colonizing populations (r > 0), the
probability of population establishing before going extinct (EBE
probability) may have biclogical relevance limited to scenarios Al.
In the context of endangered populations (r < 0), if stocking,

translocation, or reintroduction is carried out only until the popula-
tion hits either the establishment or a functional extinction thresh-
old, then EBE probability has a practical relevance in scenarios B1,
B2, and A2.

Stochastic population model

Based on the deterministic counterpart, we modeled the cor-
responding SDE heuristically, incorporating environmental, demo-
graphic and immigration stochasticity. Thus, we write the growth
process characterized by the stochastic dynamical equation satis-
fied by the population x as

dx = a(x)dt + S(x)dW (1)
(as in Dennis (2002)). Here, we have the infinitesimal mean of the

process, a(x) = 1x + g, and S(x) = / 2x? +adx+02 where

o} 2x? adx and a are the mﬁmtesnmal variances in the popula-
tlon ﬂuctuatzons correspondmg to the environment (see Ricciardi
(1986)), demography (see Feller (1951)), and immigration. Here,
dW ~ N(0, dt). The differential of the diffusion process of x is for-
mulated in terms of Ito stochastic integral as in Dennis (2002) and
Drake and Lodge (2006). Tier and Hanson (1981) studied the case
where demographic and environmental stochasticity are incorpo-
rated together into a SDE population model, which was later used
by Drake and Lodge (2006) to investigate invasive species pepula-
tions. Here we further extended the idea to incorporate immigra-
tion stochasticity.

We note that, the processes involving propagules flowing into
a system, either natural or human-mediated, can be Poisson (e.g.
Drury et al. (2007) and Jerde and Lewis (2007)). In our paper, we
assume this processes to be Gaussian allowing the immigration
to be over-dispersed. We assume the same properties of stochas-
ticity in immigration in the event of replenishment of declin-
ing populations by stocking, translocation or reintroduction. Such
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assumptions also simplify the formulation of the SDE into a form
that satisfies the FPE, and can be analytically solved for EBE
probabilities.

Diffusion approximation for EBE probabilities

We note that, the transition probability density P(xy, t) for a
population at initial position (x;) and time (—t), given that the
final position and time are fixed, for Eq. (1), satisfies the backward
FPE. Solving the backward FPE, we can calculate the probability of
a population remaining between, or exiting, two fixed population
levels, such as establishment and extinction thresholds. Thus, we
can write the backward FPE that satisfies the SDE in Eq. (1) as,

AP (0. =) = AQBP (o, 1) + ZBEIP (55, ~) @)

where the diffusion coefficient is B(x) = 2(8.x* + Bax + By)-
and 28, = o7, 2fs = o] and 28, = o} are the spectral
densities of the zero average Gaussian processes corresponding to
environmental, demographic, and immigration stochasticity, and
the drift coefficient is A(x) = a (x).

We define G(xq) as the probability of the population first hitting
an arbitrary establishment threshold (x4) before first hitting an
arbitrary extinction threshold (x. ), (EBE probability) assuming initial
position X > xp > X,. Here, G(xp) satisfies the time-homogeneous
version of Eq. (2) That s,

1
A(x0) 0, G(x0) + EB(XO)BXOXOG(XO) =0 (3)

with boundary conditions, G(x;) = 1, and G(x,) = 0 (Gardiner,
2004). We solved the general case above using a finite-difference
numerical method (Grasselli and Pelinovsky, 2008). However, note
that, the EBE probability exists in ecological reality only if the
upper and lower thresholds are functionally establishment and
extinction thresholds, which is true in the scenarios A1, and B1.
This would also hold for scenarios A2 and B2, if stocking is stopped
once the population realization hits the functional extinction
threshold.

An analytical solution for the special case of the FPE in Eq. (3),
with demographic and immigration stochasticity alone, yields EBE
probability with initial population at x; to be as follows.

E(xo) — E(x)

Gxp) = ————
) = F ) — Exe)

(4)

Here, E(x;) = (bx;+¢)*,F; (k, k+1; f}(bx,- -+ c)>, =0}/2,c=

21 __/rc a\
05/, kK = kgi‘“b‘}-?‘

the Kummer confluent hypergeometric function of the first kind

(Slater, 1960) of the form, F;(a,b.z) = 1+ £ + %22-223, + o+

%”;‘% st.a, = a(a+ 1@+ 2)- - (a + n) (see Appendix A for
derivation). An analytical solution for the special case of Eq. (3)

with immigration stochasticity alone yields the EBE probability
with initial population at xp to be Eq. (4) with E(x;) = Erf; (g—pﬁ“\/-i)

2
(see Appendix A for derivation). Here, Erfz is the error function
(Abramowitz and Stegun, 1972), and x; takes subscript values
i=0,e,d.
The point of changing the impact of immigration stochasticity on EBE
The point at which the direction of impact of stochasticity in im-
migration on the EBE probability switches, satisfies the condition,
9%—%)—) == 0. Thus for the case where immigration stochasticity alone
is present (Eq. (4)), the equation to be satisfied by the parametric
combination is as follows.

((q + %) €0 — (g + 1xe) e"f) B (E(XO) - E(Xe))
(q + 1Xg) ek — (q + rx,) eke E(xg) — E(xe)

i, and x; denotes xg, X, and Xg4. 1F; is

=0. (5)

Here, ki = €20 and E(x) = Erf, (9+—’°‘—’) with subscript values
ray a1

i =0, e, d. Here, Erf, is the error function (Abramowitz and Stegun,
1972), and x; takes subscript valuesi = 0, e, d.

First passage time

We define T, (x4, Xp) as the nth moment of the first passage time,
given that the population size first hit an arbitrary establishment
threshold, x4, before an arbitrary extinction threshold, x.. That is,
we denote T,(Xy, Xo) as the nth moment of first passage time for
EBE assuming the initial position of the population density is at
X4 > Xg > X, for the scenarios A1, and B1.

Thus, the function T, (x4, Xg) satisfies,

1 .
A(Xg) 0y, G (x0) Tr (g, Xo) -+ 'Z‘B(Xo)axox(; G(x0)To (X4, X0)

= ~nG(xo) Tn-1(Xyg, Xo) (6)

(see Appendix B for derivation). The boundary condition at x; = x4
is determined by G(xy) = 1, T;(x4.Xs) = 0, and hence, G(x4)T,
(x4, xg) = 0. The boundary condition at x, = x, is determined by
G(x.) = 0, and hence, G(x.)T,(x4,X.) = 0. The casesn = 1,2
yield the mean and the second moment of first passage times re-
spectively. Thus, a special case of the equation above, that is when
n = 1, yields the mean time for EBE as in Gardiner (2004).

We solved the mean time for EBE iteratively using a finite-
difference numerical method (Grasselli and Pelinovsky, 2008) by
incorporating the solutions given in Eq. (4) for G(xg) in Eq. (6).
This can be extended to scenarios A2 and B2 if the stocking is
stopped once the population realization hits a functional extinction
threshold.

3. Results

EBE probability of colonizing (A1 :
(B1:r < 0,p < a)populations

Solutions to the time homogeneous Eq. (3), based on the range
of parameter values given, show that increased stochasticity in
immigration decreases the EBE probability in populations in high
fitness, or populations introduced to favorable habitats (r > 0)
(e.g. invasive populations) (Fig. 3). Increased stochasticity in immi-
gration increases the EBE probability of populations in low fitness,
or in unfavorable habitats (r < 0) (e.g. endangered or declining
populations) further amplifying the effect caused by the environ-
mental and demographic stochasticity on the EBE probability. The
percentage effect is generally higher at low and moderate environ-
mental and demographic stochasticity, and greater when the initial
population size is nearing the extinction threshold for r > 0, and
greater when the initial population size is nearing the establish-
ment threshold for r < 0 (Fig. 4).

EBE probability of declining populations given that immigration
(stocking) is ceased when the population realization hits a threshold
(B2:r<0,p>a)

Fig. 5(a) shows that the stochasticity in stocking (immigration)
decreases the EBE probability in scenario B2 (r < 0, g > 0)wheng
is large and positive (resulting from large p with fixed demographic
Allee effect a), given that stocking is ceased when the population
hits a threshold. Stochasticity in immigration increases EBE proba-
bility when g is large and negative. However, Fig. 5(b) shows that,
the point at which the direction of the impact of stochasticity in
immigration on EBE probability changes sign, is shifting towards
large and negative r given that q is positive and large, and shifting
towards small and positive r given that q is negative and large. This
suggests that the direction of the impact of stochasticity in immi-
gration on EBE probability cannot be determined by the sign of the
intrinsic growth rate or net propagule flow alone when their signs
are opposite.

r > 0,p < a)ordeclining
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Fig. 3. Probability of a population establishing before going extinct, G(xo), with respect to increasing (a) environmental stochasticity, and (b) demographic stochasticity. Initial
population size is at xo. Net propagule flow rate ¢ = —4 (such that p < a). (A1) Favorable habitats (r = 0.4); (B1) unfavorable habitats (r = —0.4). Red: propagule flow,
a, = 0(thatis without propagule flow stochasticity); green: g, = 10; blue: 5, = 20. Other parameters are: extinction threshold x, = 10, establishment threshold x; = 100.
Arrows show the direction of the impact of stochasticity in propagule flow on the EBE probability. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 4. Probability of a population establishing before going extinct, G(xo), with re-
spect to increasing initial population size at xo. (A1) Favorable habitats (r = 0.4),
(B1) unfavorable habitats (r = —0.4). Net propagule flow rate ¢ = —4 (such that
p < a). Red: propagule flow, o, = 0 (that is without propagule flow stochasticity);
green: a, = 10; blue: g, = 20. Other parameters are: environmental stochasticity,
o, = 0, demographic stochasticity o4 = 0, extinction threshold x, == 10, estab-
lishment threshold x; = 100. Probability converges to the diagonal dotted line for
higher o,. Note that, for the case of propagule flow stochasticity alone is present,
Glxg)— > (i—g—}“—:) which is the diagonal line, that is, for o, — oc (Appendix A).
Arrows show the direction of the impact of stochasticity in propagule flow on the
EBE probability(For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6, which was drawn based on the cases satisfying Eq. (5),
indicates that, the stochasticity in immigration decreases the EBE
probability whenr > 0andq > 0(scenario A2), or, when q is pos-
itive and large enough compared to negative r, or r is positive and
large enough compared to negative g. That is, in general, when the
net population growth rate remains positive. The stochasticity in

immigration increases the EBE probability whenr < 0and g < 0,
or when r is negative and large enough compared to positive g, or g
is negative and large enough compared to positive r. That s, in gen-
eral, when the net population growth rate remains negative. Thus,
we note that, when r and g have opposite signs, we cannot predict
the direction of the impact of immigration stochasticity on the EBE
probability by examining their signs alone, unless we calculated
the critical point at which the switching occurs.

It follows that, in general, when the EBE probability becomes
large, either due to high intrinsic growth rate, or high mean im-
migration rate given low intrinsic growth rate, the stochasticity
in immigration tends to decrease the EBE probability. When the
EBE probability becomes small due to large and negative intrinsic
growth rate at low immigration rates, then the stochasticity in im-
migration tends to increase the EBE probability.

Mean time for population establishment before extinction

Fig. 7, drawn based on Eq. (6), indicates that the log mean time
for EBE decreases when the immigration is stochastic regardless of
whether the population is introduced to, or existing in, a favorable
{r > 0) or an unfavorable (r < 0) habitat. This effect, simulated
for the case with environmental stochasticity, is qualitatively the
same had we incorporated the demographic stochasticity.

4. Discussion

Our results show that the stochasticity in immigration decreases
the probability of populations that are of high fitness, or introduced
to favorable habitats, or having high positive intrinsic growth
rates, such as the colonizing invasive populations, establishing
before going extinct (the EBE probability). This effect counteracts
the EBE probability increased by high mean immigration rates
that were shown in Drake and Lodge (2006). The decrease in the
EBE probability resulting from the immigration stochasticity is
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Fig. 5. (a) Probability of a population establishing before going extinct, G(xg), with respect to increasing initial population size. Here, g = —20 (dotted lines, such that
p < ascenario 1), and ¢ = 20 (solid lines, such that p > a scenario 2), r = —0.3. Green: o, = 10; blue: a, = 20. This shows the effect of stochasticity in propagule flow

on the EBE probability when g is turning to positive (p > @) from negative (p < ), that is when p is increased from a small value given that the demographic Allee effect,
a is fixed. (b) G(xo) with respect to intrinsic growth rate for the same scenarios as above, with x, = 40. Dashed lines depict the case for ¢ = 0 (that is, p = a). Circled are
the points at which the direction of the impact of propagule flow stochasticity on the EBE probability changes sign. For both illustrations above, the other parameters are:
environmental stochasticity, o, = 0, demographic stochasticity o4 = 0, extinction threshold x, = 10, establishment threshold x4 = 100. Arrows show the direction of the
impact of stochasticity in propagule flow on the EBE probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 6. The solid line (which is slightly non-linear) depicts the parametric com-
bination of intrinsic growth rate (r) and net propagule flow rate (g) at which the
direction of impact of stochasticity in propagule flow on EBE probability changes
sign satisfying Eq. {5). Shaded area depicts the combinations where the stochastic-
ity in propagule flow increases the EBE probability, non-shaded area depicts where
it decreases the EBE probability. When r and g take opposite signs, whether the
EBE probability increases or decreases depends on their specific values. The other
parameters are: environmental stochasticity, 0, = 0, demographic stochasticity,
a; = 0, propagule flow stochasticity, @, = 5, extinction threshold x, = 10, estab-
lishment threshold x; = 100.

amplified further by the environmental and the demographic
stochasticity. The percentage amplification is stronger when the
population is closer to the extinction threshold.

However, we indicated that the EBE probability can be
defined ecologically meaningfully either, when the demographic
Allee effect (if existed) exceeds the immigration rate allowing
a functional extinction threshold to exists, or otherwise, if
the immigration can be stopped by an intervention after the
population reached a threshold below which the extinction is
the most likely scenario. If the immigration rate exceeds the
demographic Allee effect removing the existence of a functional
extinction threshold, continuation of immigration then results in
the population to replenish from any lower threshold driving
the population to become colonized eventually. As we have little
control over the invasive species propagating into new habitats,
especially in the cases such as propagules of marine invasive
copepods discharged into ecologically tolerable habitats through
ship ballast water (Cordell et al., 2008, 2009), the above scenario of
inevitable-colonization can often be a reality.

The impact of stochasticity in immigration on the EBE
probability is qualitatively and quantitatively the same as the
probability of a population first hitting an arbitrary upper threshold
before an arbitrary lower threshold regardless of the knowledge of
the ecological nature of the boundaries. Thus, the results of the
EBE probabilities are the same as the first passage probabilities.
It follows that, if the immigration of invasive species is made
to fluctuate by human-mediation, keeping the average the same,
then we may predict the chance that the population first reaching
a high population level (and get established) before a low level
{and go extinct) would be less than the case had the flow of
propagules remained steady (or uniform, or without stochasticity).
Supposing if a functional extinction threshold did not exist
(at the given rate of immigration and the demographic Allee
effect), then the population eventually gets colonized inevitably
regardless of the fluctuations we would create in the flow of
propagules or in the immigration. Therefore, an advantage for an
invasive species management will be the case if an extinction
threshold does exist without our knowledge. Thus, implementing
strategies to fluctuate the expected propagule flow (as opposed
to, keep it steady or uniform) regardless of the knowledge of
the existence of an extinction threshold seems benevolent to the
management as it creates a chance to reduce the establishment
probability of an invading population. Hence, the impact of
stochasticity in immigration on colonization may be incorporated
into decision-making formula for stochastic controlling of, for
example, invasive marine species propagated through ship ballast
water, especially when strategizing and developing monitoring
programs for mid oceanic exchange of ship ballast water (NOAA
technical memorandum, 2007; Simard et al,, 2011), and ballast
water discharging regulations, chemical treatments (Nanayakkara
et al, 2011), and temperature treatments of ballast water tanks
(Quilez-Badia et al., 2008). Although, the policies can be designed
and implemented to lower the mean discharge rate of propagules
to achieve better results, as an alternative, the same result may be
obtained by altering the stochasticity in the propagule flow rate,
while keeping the mean discharge rate the same.

Programs are implemented to stock or reintroduce declining
populations through captive breeding and release, and artificially
replenish populations before they go extinct (Fraser, 2007; Seddon
et al., 2007; Bell et al., 2008). Our results indicate that increased
stochasticity in stocking (or translocations, or reintroductions) in-
creases the EBE probability in declining populations in stochastic
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Fig. 7. Mean time for population establishing before going extinct, T(xq, Xo), with respect to increasing environmental stochasticity. (a) In favorable habitats (r = 0.4,
Xo = 30). (b) In unfavorable habitat {r = —0.4,x, = 90). Red: propagule flow stochasticity, o, = 5; blue: o, = 10; green: g, = 20. Other parameters are: extinction
threshold x, = 10, establishment threshold x, = 100, and net propagule flow rate ¢ = —4. Arrows show the direction of the impact of stochasticity in propagule flow on
log mean time to EBE. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

environments and demographic conditions compared to the case
when stocking is steady (or uniform), given that either the intrin-
sic growth rate is large and negative, or the negative growth rate
caused by the demographic Allee effect is stronger than the stock-
ing rate. This effect is stronger in terms of percentage-increase
when the population is nearing the establishment threshold.

However, when the mean stocking rate becomes large resulting
in a high EBE probability, then the stochasticity in stocking, in turn,
can decrease the EBE probability. This suggests that, the direction
of the effect of stochasticity in stocking on the EBE probability de-
pends on the mean rate of stocking in relation to the demographic
Allee effect and the intrinsic growth rate of the population. Thus, if
we are to make a decision as to whether to amplify or de-amplify
the stochasticity in stocking in order to increase the EBE probabil-
ity under practical circumstances, then we will need to assess the
critical point at which the direction of the impact on EBE switches
as we have shown under the results section. However, it may be
more effective to begin reintroductions with regulated stochastic-
ity, and later turn it into a steady flow with subsequent increase
in population densities. Under the right conditions, increasing the
stochasticity at low average stocking rate may be a low-cost strat-
egy compared to increasing the average stocking rate, as both may
yield the same result.

Studies that quantified the effect of stochasticity in reintroduc-
tions, translocations, or stocking on population establishment suc-
cess have not been found in the literature. Apparently, some datain
reintroduction and stocking studies (e.g., Verspoor and de Lea'niz
(1997) and Shute et al. (2005)) shows unplanned variations in the
release of propagules. Shute et al. (2005) indicated reintroduction
success of 4 species of fishes in Abrams Creek, Tennessee, appar-
ently indicating high variations in stocking. Similarly, Verspoor and
de Lea'niz (1997) indicated stocking success of Scottish Atlantic
salmon in two Spanish rivers. Yet, their data do not seem to have
enough information to be able to test the effect of stochasticity in
immigration on the establishment success. A well-designed exper-
iment can be implemented to test our hypothesis more concretely.

We have also found that, the stochasticity in immigration de-
creases the mean time for a population establishing before going
extinct (mean time for EBE) in both high- and low-fitness popu-
lations. Thus, the management of invasive species has an inter-
esting theoretical trade-off as to whether to lower the EBE prob-
ability, and thus risks, by increasing the immigration stochastic-
ity, or to increase the mean time for the population establishment
by decreasing the immigration stochasticity after a population is
detected in a novel habitat. In the case of stocking declining pop-
ulations, we have observed that the increase in stochasticity in

stocking decreases the mean time for the population establish-
ment. Thus, it is complementing the increase in probability of the
population establishing before going extinct when the mean stock-
ing rate is low. However, care must be taken as the risk of these
decisions is high because the mean stocking rate can become large
without our knowledge far exceeding the demographic Allee ef-
fect, thus causing the stochasticity in stocking to suppress the EBE
probability. The knowledge of the critical point at which the im-
pact on the EBE probability switches direction may be crucial in
making those decisions. However, we need to test our hypotheses
using empirical studies before application.

In a nutshell, the study suggests that the stochasticity in im-
migration, together with the environmental and the demographic
stochasticity, suppresses the colonization potential of invading
populations, yet increases the reestablishment potential of declin-
ing populations in general. Either way, it seems to serve the in-
terests of ecological management, and help producing low cost
strategies.

Further developments may include improving the model to re-
flect periodic variation in environmental forcing with stochasticity
in immigration, which may be a scenario much evident in marine
habitats. It may enable us to analyze the stochastic impacts on the
cases with time-dependent introductions.
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Appendix A

Special case: EBE probabilities of population in the presence of
demographic and immigration stochasticity

Here, we solve Eq. (3) in the main text, A(x)d,G(x) +
3B(X)8,G(x) = Ofor the case A(x) = rx+q,and, B(x)/2 = (bx+c),
where we denote b = 07 /2,and ¢ = 0] /2.

We substitute x by z =  In(bx + c), thus, x = ;[exp(bz) — c],
dx = (bx + ¢)dz.
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Thus, we can write Eq. (3) as 8,G(z) + (5 + (¢ — & — b))
3,G(z) = 0 as, 3G uTlch (8G(z) — bd G(z)). and,
(G = GEs36@).

Thus, it follows from (Polyanin and Zaitsev, 2003, 2.1.3-27)
that the transformation of an equation of the above form with
substitutions, £ = e* Polyanin and Zaitsev (2003, 2. 1 3 -27) leads
to the equation of the form, §28;: G(£) + (56" + (g — £ — b+ 1))
£3:G(¢) = 0, in Polyanin and Zaitsev (2003, 2.1.2- 146)

Substitutions ¢ = & and, W(Z) = G(&)¢ 7% where k = 1
(fbE - q+ b) leads to the equation of the form b7 8, W () +
(re+b(5 —qg+b)+b)aWE) + L (5 —q+b)W(Q) =
in Polyanm and Zaitsev (2003, 2.1.2- 108) Transformmg into the
Kummer's equation (Polyanin and Zaitsev, 2003, 2.1.2-108), it
yields the general solution following Polyanin and Zaitsev (2003,
2.1.2-70)

r

—-r -
W) = iRy (kvk+1,‘b_2‘§)+c2§k11:l (O,I—k,?i)
~q+b) and, Fi(a, b,z) = 1+ % 4 @z

(By22"
-+ 8% stoa, = a(@+ 1)(a+2)---(a + n), which is the
confluent hypergeometric function of first kind (for more details:

Slater (1960) and Abramowitz and Stegun (1972)).
Thus, we can write, W(Z) = CyFy (k, k+1, "4’) + Gk,

G(EYe ™, it

_ 1(r
where k = 1 (£

By reverse transformation, ¢ = &% and, W(2) =
yields,

—-r
G@) = e F (k, k+1; -b?e“) + G
Substituting for x for z, we get,
—r
G(x) = Cy(bx + O)% Fy (k, k+ 1 -b—z—(bx + c)) +G.

Applying boundary conditions, G(x4) = 1, and G(x.) = 0, it yields,

Gxo) = FRU=EEE where, E(x;) = (bx;+ )1 Fy (k. k+ 15 ZF (bx; +

c)) for x; denoting xg, X, and x,. Here, k = ( ) + 1.

Special case: EBE probabilities of population in the presence of
immigration stochasticity

Here, we solve Eq. (3} in the main text, A(x)0,G(x) + %B(x)
0xG(x) = 0 for the case A(x) = rx + g, and, B(x)/2 = ¢, where
we denote ¢ = 0;//2.

Thus, equation, A(X)3,G(x) + %B(x)axxc(x) = 0 has a general

solution,
dx’) dx’

G(x) = fCexp (—

where C is a constant. After applying boundary conditions at xp =

2A(x)
X’ B (X/)

X4 determined by G(x4) = 1, and at X, = x, determined by
G(x.) = 0, we obtain,

E — E(x
Cixg) = E0 (o)

E(xg) — E(xe)

where, E(x;) = Erfz < ) or can also be expressed in terms of
confluent hypergeomemc function of first kind, as E(x;) = (g +
x)+F; (2 2 ! *”‘"2). Here, x; for subscript i = 0, e, d, and Erf,

2rc
is the error function.

Note that, G(xg)— > (;;'—_x—) for ¢ — inf.

Appendix B

Moment generating function of passage times of the population first
hitting an upper boundary before a lower boundary

Following the methods in Gardiner (2004), here, we derive the
nth moment of time for a population initially at xg in (X4, X.) to exit
through an upper boundary x4 before first hitting a lower boundary
Xe.

We define the total probability that population initially at (x,, 0)
exited through x; at time t given by the time integral of the
probability current at x; by

t
Qxy(xp, £) = —f dt’J(xa.t" | x, 0)
0
t
= / dr’ { — A(xg)P (x4, t' | %5, 0)
0
1 7
+ 50 [BGa)P(xg.t' | x0. 0)] ¢ .
Here, P(x4,t' | Xg, 0) is the transition probability density function

that satisfies FPE corresponding to SDE Eq. (1). We let the time that
population leaves (x4, X, } be T. Thus the probability that population
has exited at time ¢ given that it exited through x4 be

QXd (XO- t)

Pr(T, t) = R
S

Here, g,, (xp, t) is the probability that population exited through x4
attime .

We note that P(x4, t' | X0, 0) satisfies a hackward Fokker~Planck
equation.

From here onwards, we ignore subscript zero that indicates the
initial position as a variable,

Thus,

1
A(x) 3Gy, (%, 1) + -Z—B(X)Bqux,, (x.t)

t
- / 0830 (%, £ | %0, 0) = —J (x| %0, 0)
0

= 3, (0. 1). (B.1)

Note that, for the time-homogeneous case (letting, t — o) the
above Eq (B.1) reduces to Eq. (3) in the main text, that is, A(x)a
Gx) + 5 B(x)dxx(,(x) = 0, such that, G(x) = g,,(x, o0) = Jo dt’J
(g4, t" | x 0), which is the probability that population establishing
before going extinct (or first hitting x4 before first hitting x.) with
boundary conditions, G(x4) = 1, and G{x.) = 0.

We write the mean exit time, given that population exits
through x; as

o
Ti(xq, %) ==[ £8; Pr(Ty, < t)dt.
0

This is because, Pr(T,, < t) is the cumulative density function that
population exited before time t of the probability density function,
0; Pr(Ty, < t), that population exited at time t given that it exited
through x4.

Thus, we write the nth moment of the exit time, given that

population exited through x; as

oc
Ta(Xg, X) = / 78, Pr(T, < t)dt
0

_ /mt"at ( Gy (X, 1) )dt: Jo £79qy(x, 2
0 Gy (X, 00) G(x)

After integration by part,

Jo 198"y (X, £) — NGy, (x, )E" 5]
G(x) '

Ty (%4, %) =
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Here we find, [, 3t"qy, (x, t) = 0, thus, it yields,

To(xg. X)G(x) = —n / Gxy (%, DE 0L (B.2)
0

Multiplying Eq. (B.1) by ™~

- 1 -
A" ey (%, 0) + S BRIt 'y (%, 1)

= " By, (%, 1) = Bt gy (x, 1) — (1 = D) (X, "2,
Integrating w.r.t t from O to infinity,
oc

A(X) 3y f £ gy, (x, 13t

0

] o
+ —2~B(x)axx / "7y, (x, 1)L
fo o) 0 o
=f At gy, (k. 1) — (n — 1)/ Grg (X, £)E"20E.
0 0
As [7 0" gy, (x, t) =0, it yields,
50
A(x)ax/ " gy, (x, 1)t
0
1 o
+—2vB(x)8xx[ " gy, (x, )3t
0

=—(n— 1)[ Gy (%, DE" 0L
0

Substituting Eq. (B.2) on the above, and denoting x = xy, finally it
yields,

. . 1
A(x0) 0y G(x0) Ty (X4, Xo0) + EB(XO)BXQXO G(x0) T (X4, X0)
(B.3)

The boundary condition at x = x4 is determined by G(xg) = 1,
Ta (X4, X2) = 0, and hence, G(x¢) T, (Xq, x4) = 0. The boundary con-
ditions at x; = x, is determined by G(x,) = 0, and hence, G(x,)T,
(X4, Xe) = 0.The cases n = 1,2 yield the mean and the second
moments of first passage times respectively. By substituting G(xp)
from the solution to Eq. (3) (main text), we solve Eq. (B.3) above
numerically for T, (x4, Xo) for the nth moment of first passage time
iteratively for the population first hitting an upper threshold xg,
before a lower threshold x,.

= —nG(Xg) Tu—1(X4, Xo)-
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